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A Novel Vision-Based Adaptive Scanning for the
Compression of Remote Sensing Images
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Abstract—Most of the compression methods for remote sensing
images are often designed under the guidance of mean square
error. However, for the vision-related applications, high peak-
signal-to-noise ratio (PSNR) does not mean good visual quality. On
the other hand, existing compression methods that considering the
human visual system (HVS) are usually designed for natural im-
ages, without taking the unique characteristics of remote sensing
images into account. Focusing on this problem, we present a novel
HVS-based adaptive scanning (HAS) scheme for the compression
of remote sensing images. First, after the wavelet transform, a
retina-based visual sensitivity model is established, and then, the
visual weighting mask is generated. Second, for the weighted
transformed image, an adaptive scanning method is proposed,
which provides different scanning orders among subbands and
within a subband, respectively. The former focuses on organizing
the codestream according to the importance of weighted subbands,
and the latter aims at preserving the direction information of
an image as much as possible. Finally, the binary tree codec is
utilized. Experimental results show that, as compared with other
scan-based compression methods, the proposed HAS-based com-
pression method can provide better visual quality, which makes
it more desirable in vision-related applications for remote sensing
images.

Index Terms—Adaptive scanning, embedded coding, human
visual system (HVS), remote sensing image compression.

I. INTRODUCTION

A LONG with the increasing demand for remote sensing
data, the sensor technology has been developed to im-

prove the spatial and spectral resolution, which brings great
convenience to the application of remote sensing images. On
the other hand, abundant information is at the cost of the huge
data. At present, the latest generation spaceborne sensors can
continuously produce massive quantities of high-dimensional
remote sensing images at a rate of several terabytes per day,
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which brings a great challenge to data storage and transmission
[1], [2]. These contradictions can be alleviated by exploiting
some traditional compression technologies, such as EZW [3],
SPIHT [4], SPECK [5], JPEG2000 [6], or some improved
versions of them [7]–[13]. Usually, these compression methods
tend to be measured in the sense of the mean square error
(MSE), i.e., at the same conditions, the compression method
that can provide smaller MSE is considered to be a better
method. However, a reconstructed image with smaller MSE
does not mean that it is suitable for all applications. In fact,
the evaluation of a compression method mainly depends on
the application. With the popularity of remote sensing images,
many applications require that the remote sensing image can be
browsed online. One of the research hotspots, i.e., Digital Earth,
also needs a large number of remote sensing images with good
visual quality to support it [14]. In this case, a compression
method designed with considering human vision is more favor-
able. The human visual system (HVS) is a complex system,
which has been proven to be inconsistent with MSE [15].
Therefore, it is necessary to study a compression method for
remote sensing image from the perspective of the human visual
mechanism.

Human perception has been and still is the focus of many
image coding studies [15]. There are several ways to incor-
porate human perception into image coding schemes. One
way is discrete cosine transform (DCT)-oriented approaches,
such as in [16]–[18], and another is discrete wavelet transform
(DWT)-oriented approaches, such as in [19]–[22]. In addition,
some coding schemes are designed with considering the just-
noticeable difference (JND) model, which exploits the fact
that some distortions of an image are not perceptible by a
human observer, such as in [23] and [24]. In addition, some
vision-related compression methods are designed based on
JPEG2000, such as in [25] and [26]. Recently, some HVS-
based coding schemes have been designed from the perspective
of information theory. For example, Niu et al. [27] proposed a
perceptual coding strategy, which aims at preserving the scale-
invariant second-order statistics of natural images to guaran-
tee the perceptual quality, and the authors in [28] developed
some new models, with regard to the HVS, and deduced a
new limit that promises theoretically achievable data reduction
ratios with no perceptual loss in typical scenarios. However,
all these approaches are designed for natural images and do
not take the characteristics of remote sensing images into
consideration.

For a natural image, after the DWT, a compact representation
usually can be obtained, which helps to obtain a good coding
performance. However, as compared with a natural image,
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Fig. 1. Overall framework of the proposed HAS-based compression method.

a remote sensing image has its own unique characteristics.
It usually contains a great number of ground objects, which
makes the information of details abundant, such as geometric
information, edge and texture information, and even the outline
of some small targets. Therefore, the coefficients of high-
frequency subbands are usually still very large, which becomes
a heavy burden for compression.

In recent years, some compression schemes that are specifi-
cally designed for remote sensing images have been proposed,
such as in [29]–[32]. These compression schemes compress
remote sensing images from several aspects, such as oriented
wavelet transform or sparse representation. Since remote sens-
ing images are often captured by sensors in a push-broom
fashion and are quite large, thus, the scan-based compression
approach is also very desirable. Kulkarni et al. [33] present
a scan-based method that can use JPEG2000 with incremen-
tally acquired data. However, the high coding performance of
JPEG2000 is at the cost of high complexity. The Consultative
Committee for Space Data Systems (CCSDS) published a
recommended standard for the onboard image compression.
The standard of CCSDS is a scan-based algorithm, but it does
not allow the interactive decoding. Furthermore, the level of
DWT of it is fixed to 3. In 2009, Vílchez et al. [34] presented
some prominent extensions to the CCSDS, which allowed any
number of wavelet decomposition levels and supported several
forms of decoding. However, all these approaches are based on
fixed scanning, which does not take the content of an image into
consideration.

In 2012, the state-of-the-art compression method based on
scanning for remote sensing images, which was named binary
tree coding adaptively (BTCA), was proposed [35]. It can
improve the coding performance significantly. Although the
process of BTCA is somewhat related to the content of the
image, it still adopts a fixed scanning way to scan the trans-
formed image before establishing a binary tree. As we know,
different images are of different contents. The content of an
image can be described from different aspects, such as color,
texture, shape, and so on. In this paper, the content of an image
is defined from the perspective of energy. The reason is that
different images are of different directional information, and
the amount of directional information can be reflected from the
energy distribution of the transformed image. If the subbands
with larger energy can be scanned in priority, at the same bit
rate, more directional information can be preserved. Therefore,

from the perspective of scanning, an adaptive scanning method
is more helpful to improve the coding performance.

The remainder of this paper is organized as follows: In
Section II, a retina-based visual sensitivity model is analyzed,
and the importance weighting mask is generated. Then, we
give a detailed description of the proposed HVS-based adap-
tive scanning (HAS) scheme for remote sensing images. In
Section III, the binary tree codec is introduced. Section IV
gives some quality evaluation indexes used in this paper. In
Section V, we present some numerical experiments and prove
the high validity of the proposed method. Finally, the conclu-
sion and discussion is provided in Section VI.

II. PROPOSED HAS METHOD

In this paper, a novel HAS approach for the compression
of remote sensing images is proposed. The whole compression
process can be viewed as two stages in cascade. The first stage
is to generate an importance weighting mask according to the
human visual characteristics, which will help to guarantee that
the bits with greater contribution to the visual quality of image
can be scanned in priority. The second stage focuses on de-
signing different scanning orders among subbands and within a
subband, respectively. Finally, the binary tree codec is exploited
to encode the 1-D coefficient sequence. The overall framework
of the proposed HAS-based compression method is shown
in Fig. 1.

A. Retina-Based Visual Sensitivity Model

The human eye uses the retina to collect and process visual
information [15]. In the human retina, the spatial distribution
of photoreceptors is nonuniform, with the highest density at the
fovea. This density rapidly decreases with distance from that
area. Hence, the local visual frequency bandwidth also falls
away [45]. Usually, the visual frequency is used to describe
the contrast sensitivity function (CSF), which is utilized to
characterize the varying sensitivity of the visual system to 2-D
spatial frequencies [46]. The human eye cannot perceive spatial
frequencies beyond a given cutoff frequency, i.e., it is not
necessary to preserve the information of very high spatial fre-
quency of an image from the perspective of HVS. Therefore, the
characteristics of the retina must be considered, if we want to
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Fig. 2. Mapping model of the fovea and the viewing distance.

improve the visual effect of the reconstructed image at the given
bit rate.

For the retina, vision is more sensitive at the fovea than at
other portions of the retina. In other words, the spatial resolu-
tion of the HVS is the highest at the fovea, and it decreases
rapidly with increasing eccentricity. Based on this fact, it is
possible to remove considerable visual information redundancy
from the peripheral regions and still reconstruct a perceptually
good quality image [36]. For a given image, the visual sensi-
tivity model provides the error sensitivity of each position. The
less sensitive to the error, the more information can be removed
from this position. In [36], Wang and Bovik established the
mapping model of the fovea and the viewing distance; it is
shown in Fig. 2.

In Fig. 2, p represents any point in the image, and p′ is the
projection onto the retina of point p. pf represents the point
we are staring at, i.e., the foveation point, and the fovea is the
projection onto the retina of point pf . Here, we assume that
the image plane is perpendicular to the line that passes through
the fovea and the foveation point pf . From the mapping model,
it can be seen that a circle in the image plane centered at pf will
be projected to a circle in the retina centered at the fovea.

In [37], Geisler and Perry have pointed out that the contrast
threshold is a function of retinal eccentricity. For a retinal
eccentricity, the contrast threshold function can calculate the
maximum frequency that can be perceived by the human eye.
The contrast threshold function can be obtained by fitting the
experimental data. For an image, the contrast threshold function
in the spatial domain can be represented as

CT (f, e) = CT0 exp

(
αf

e+ e2
e2

)
. (1)

Here, f represents the spatial frequency (in cycles/degrees);
e represents the retinal eccentricity (in degrees).CT0 represents
the minimal contrast threshold. α is the spatial frequency decay
constant. e2 represents the half-resolution eccentricity constant.
CT (f, e) represents the visible contrast threshold, which is a
function of f and e. For the model (1), the best fitting parameter
values given in [37] are CT0 = 1/64, α = 0.106, e2 = 2.3.

For a given eccentricity e, (1) can be used to find its critical
frequency, namely, cutoff frequency fc, which means that any
higher frequency component beyond it is invisible. fc can be
obtained by setting CT = 1, i.e.,

fc =
e2 ln

(
1

CT0

)
α(e + e2)

cycles/degree. (2)

Obviously, the cutting frequency fc only depends on the ec-
centricity e. We assume that the width of an observed image is
N pixels, and the foveation point pf = (pfx, p

f
y)

T
(pixels) and

the viewing distance v (measured in image width) from the eye
to the image are known. The distance from point p to pf is
then d(p) = ‖p− pf‖2 (measured in pixels). The distance u
(measured in image width) from point p to pf is then u =
d(p)/N . The eccentricity is given by

e(v,p) = tan−1

(
d (p)

Nv

)
. (3)

It can be seen that, from (2) and (3), for the given viewing
distance, the cutting frequency is a function of pixel position.
On the other hand, the maximum perceived resolution is limited
by the display resolution r, i.e.,

r =
πNv

180
pixels/degree. (4)

According to the sampling theorem, the highest frequency
can be represented without aliasing by the display, i.e., the
display Nyquist frequency is

fd =
r

2
=

πNv

360
cycles/degree. (5)

Based on (2) and (5), the final cutting frequency for a given
location p is

fm(p) = min(fc, fd) = min

⎛
⎝e2 ln

(
1

CT0

)
α(e + e2)

,
πNv

360

⎞
⎠ . (6)

Therefore, the visual sensitivity model based on fovea in the
spatial domain can be defined as

Sf (v, f,p) =

{
CT (f,0)
CT (f,e) = exp(−0.0461f · e), f ≤ fm(p)

0, f > fm(p).
(7)

For a given image, the visual sensitivity of any point p in
the spatial domain can be calculated by (7). However, most of
compression methods are carried out in the wavelet domain. For
the 9/7 DWT, the error detection thresholds for each subband
can be represented as

Tλ,θ =
a10k(log(gθf02

λ)2)

Aλ,θ
. (8)

Here, a, k, f0, and gθ are all constants. Aλ,θ is the amplitude
of the DWT 9/7 basis function corresponding to level λ and
orientation θ, and r is the display resolution. The values of a,
k, f0, gθ, and Aλ,θ can be seen in [38].

Therefore, the error sensitivity of subband (λ, θ) can be
defined as

Sw (λ, θ) =
1

Tλ,θ
. (9)

Equation (9) provides an error sensitivity value for each sub-
band in the wavelet domain. Combined with the visual sensitivity
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model of any pointp in the spatial domain, the visual sensitivity
model in the DWT domain can be calculated as

S(v,p) = [Sw(λ, θ)]
β1 · [Sf (v, f,p)]

β2 . (10)

p denotes the position of wavelet coefficient in subband
(λ, θ). β1 and β2 are parameters that are used to control the
magnitudes of visual sensitivity of subband and that of spatial
domain based on fovea, respectively. β1 and β2 are estimated
by our experiments. In this paper, we set β1 = 0.01, β2 = 3.

In Fig. 2, we can observe that tan(e) = u/v = d/Nv, i.e.,
d = Nv tan(e) ≈ Nve. Here, e is in radians. In the HVS, the
highest visual acuity is limited to the size of the fovea region
and covers 2◦ of visual angle (in radians) [21]. Visual angle is
the retinal eccentricity e in radians. Therefore, d = Nvπ/90.
This means that the fovea region is a circle with radius d.

For a fovea region, it can be regarded as the collection of
multiple foveation points. Suppose that there are k foveation
points pf

1 ,p
f
2 , . . . ,p

f
k . For each coefficient p, its visual sensi-

tivity model Si(v,p), i = 1, 2, . . . , k can be calculated by (10).
Finally, the visual sensitivity model of it can be determined by

S(v,p) = max
i=1...,k

(Si(v,p)) . (11)

B. Importance Weighting Mask

The purpose of the importance weight mask is to guarantee
that the bits with greater contribution to the visual quality
can be encoded and transmitted in priority. Based on (10) in
Section II-A, the visual sensitivity is closely related to the
viewing distance. However, in practical applications, the view-
ing distance v is not known for the encoder. Wang and Bovik
[36] solved this problem by taking the probability distribution
of viewing distance into consideration when calculating the
weights of coefficients.

The probability distribution model of viewing distance can
be represented as

p(v) =
1√
2πσv

exp

(
−
(
(ln v − μ)2

2σ2

))
, v ∈ (0,+∞).

(12)

Here, σ is 0.4, and μ is 1.2586. The curve of the probability
distribution of viewing distance is shown in Fig. 3. Then, the
importance weight of coefficient pi is given by

W (pi) =

+∞∫
0

p(v)S(v,pi)d (v) . (13)

Suppose that the fovea point is the center of an image. Based
on (11)–(13), the importance weighting mask is obtained,
which is shown in Fig. 4.

C. HAS Method

Supposing that a transformed image is X , the size of it is
M ×N . The scanning process of the image can be defined as
a bijection b that is from a closed interval [1, 2, . . . ,M ×N ]
to the set of ordered pairs {(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ N},

Fig. 3. Probability distribution model of viewing distance v.

Fig. 4. Importance weighting mask.

where the latter set represents the locations in the image [39].
After scanning, the 2-D transformed image is converted to a 1-D
coefficient sequence that can be represented as [Xb(1), Xb(2),
. . . , Xb(MN)]. The various-scanning method, in fact, is a bijec-
tion function b having different definitions. Once the definition
b of a scanning method is given, then the process of com-
pressing a 2-D image becomes a process of compressing a 1-D
sequence X̃ = [Xb(1), Xb(2), . . . , Xb(MN)].

For a transformed image, the coefficients that scanned first
are encoded in priority. Typically, the organization of code-
stream is performed according to the order of scanning. This
means that the codestream of those coefficients that scanned
first is in front of the entire codestream. As a result, this part
of the codestream will be decoded in priority and displayed if
necessary. Therefore, at the same bit rate, different scanning
order can lead to different quality of reconstructed image. Thus,
the scanning order is very important. If those coefficients that
can make a greater contribution to image reconstruction can be
scanned first, then the quality of reconstructed images must be
improved.

Generally, a 2-D image can be converted into a 1-D sequence
by some canonical scanning strategies, such as raster scan,
zigzag scan, and Morton scan. Different scanning strategies are
suitable for different applications. The context-based predictive
techniques, which are typically designed for lossless com-
pression, commonly adopt the raster scan. Memon et al. [39]
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point out that the raster scan is superior to other scanning meth-
ods, when the prediction-based techniques are used. For the
transform-based coding methods, the zigzag scan can group
the coefficients efficiently when the DCT transform is used.
The DCT-based encoder can be regarded as the compression
of a stream of 8 × 8 blocks of an image sample. For each 8 ×
8 block, the DCT can concentrate most of the information of
the block in the lower spatial frequencies, i.e., the top left
corner of the block. After quantization, all of the 64 quantized
coefficients are ordered into the zigzag sequence [48]. The
reason for the zigzag scan is that it can scan the low-frequency
nonzero coefficients before scanning the high-frequency coeffi-
cients. However, the zigzag scan is essentially a kind of “line”
scan, i.e., instead of representing some insignificant “block,”
it can only represent an insignificant “line.” For DWT, there
are several ways to decompose an image into various subbands.
Among them, octave-band decomposition is the most widely
used. For the octave-band wavelet decomposition, each coef-
ficient in a high-frequency subband has four “children” corre-
sponding to its spatial position in the higher frequency subband.
This implied that if a wavelet coefficient at a coarse scale is
insignificant, then all wavelet coefficients of the same orienta-
tion in the same spatial location at a finer scale are likely to be
insignificant. Therefore, for a wavelet transformed image, there
could be a great many insignificant “blocks” in the wavelet
domain. If these insignificant “blocks” can be organized and
represented in a properly way, the coding performance will be
improved. Lewis and Knowles [49] point out that the treelike
data structure is an effective way to represent the coefficients
of the octave decomposition. For the treelike data structure,
Morton scan is the most commonly used scanning method.
From the perspective of information preservation, as compared
with the zigzag scan, Morton scan is a kind of “block” scanning
method, which can preserve the “block” structure of the octave
decomposition and thus improve the efficiency of encoding.
Some classic coding algorithms, such as EZW and SPIHT, are
designed with the Morton scan. However, it does not take the
characteristics of wavelet subband into consideration. More-
over, the remote sensing image usually contains a great number
of ground objects, which makes a lot of information still exist
in high-frequency subbands after the wavelet transform, and the
amount of information of these subbands may be quite differ-
ent. If the fixed scanning method is adopted, it may not guar-
antee that the scan is performed according to the importance of
the subbands. In other words, the subbands that scanned before
may be less information. Therefore, the fixed scanning mode
may bring a great influence on the coding performance.

Based on the aforementioned analysis, for the scanning of
a transformed image, the “block” scanning method is more
appropriate. A question then arises: for a remote sensing image,
what is a proper “block” scanning method? In addition, for
the problem that the amount of information of high-frequency
subbands may be quite different, how to design an effective
scanning order among subbands is another question that needs
to be considered.

In this paper, we present a novel HAS scheme for the
compression of remote sensing images. The process of the HAS
is presented in Algorithm 1.

Algorithm 1 The process of HVS-based, adaptive scanning
method.

Input: A wavelet transformed image X , the level of decom-
position is J .

• Calculate the retina-based visual sensitivity model, and
then weight the image X by the generated importance
weighting mask W . The weighted image can be repre-
sented as

Xw = X ·W.

• Calculate the energy of each weighted subband [43]. The
energy can be represented it as Em,d. m-Scale (m =
1, 2, . . . , J), d-Direction (d = 1, 2, 3, 4. “1” represents
the lowest frequency subband. “2” represents the hori-
zontal direction, “3” represents the diagonal direction,
“4” represents the vertical direction, respectively)

Em,d =

R,C∑
i,j

cw(i, j)
2

R and C are the number of row and column of the
current subband, respectively; cw(i, j) represents the
coefficient of the current weighted subband that located
in (i, j).

• Determine the scanning order among all the weighed
subbands according to their energy.

• Determine the scanning order of each weighed subband.
For each weighted subband Xw(m, d)

— If m = 1 or m = 2, then the “horizontal z-scan” is
adopted.

— Else if m = 4, then the “vertical z-scan” is exploited.
— Else if m = 3, then the scan method depends on

the horizontal subband and vertical subband of this
level.
1) If Em,2 ≥ Em,4, the “horizontal z-scan” is per-

formed to this subband.
2) If Em,2 < Em,4, the “vertical z-scan” scan is

performed to this subband.
End

Output: 1-D coefficients sequence that generated by scanning
the 2-D transformed image.

From Algorithm 1, it has been demonstrated that the pro-
posed HAS scheme is mainly performed by three steps. First,
for the transformed image, all the wavelet coefficients are
weighted by the importance weighting mask. Second, the en-
ergy of each weighted subband is calculated, and the scanning
order among subbands is determined according to their energy
in descending order. The purpose of doing so is to organize the
codestream, according to the importance of weighted subbands.
Finally, for the scanning within a weighted subband, we take
the characteristics of subbands into consideration. For the hori-
zontal subbands, they reflect the information of an image in the
horizontal direction; hence, we adopt the “horizontal z-scan”
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Fig. 5. “Horizontal z-scan” method and the “vertical z-scan” method.
(a) “Horizontal z-scan” method used to the subbands with more horizontal
information. (b) “Vertical z-scan” method that used to the subbands with more
vertical information.

as the scanning method. Similarly, for those vertical subbands,
they represent the vertical information of an image; if the scan
can be performed along the vertical direction, coding perfor-
mance should be improved. The “vertical z-scan” method is
designed for the vertical subbands in this paper. The “horizontal
z-scan” method and the “vertical z-scan” method are shown
in Fig. 5(a) and (b), respectively. In addition, for the diagonal
subbands, the scanning method depends on the image itself,
i.e., if the horizontal information of an image is much more
than vertical information in the current wavelet level, then the
“horizontal z-scan” method is adopted. Otherwise, the “vertical
z-scan” method is conducted.

Now, we give an example of the HAS method. The original
image is shown in Fig. 6(a). For the given image, the visual
weighting mask is generated by utilizing the visual sensitivity
model and the probability distribution of viewing distance.
Then, each wavelet coefficient is weighted based on the visual
weighting mask. Suppose that the level of wavelet decomposi-
tion is 3. Based on Algorithm 1, the energy of each weighted
subband is calculated, and the results are tabulated in Table I.

According to Table I, the scanning order among weighted
subbands is determined, i.e., LL3, LH3, HH3, HL3, LH2, HH2,
HL2, LH1, HL1, and HH1. Then, for each subband, the scanning
method of it depends on the characteristics of the subband. The
“horizontal z-scan” method is used for the LL3, HL3, HL2, and
HL1. The “vertical z-scan” method is exploited for the LH3,
LH2, and LH1. In Table I, it can be observed that the vertical
information is much more than the horizontal information for
each level of the transformed image. Therefore, for all the diag-
onal subbands, i.e., HH3, HH2, and HH1, the “vertical z-scan”
method is adopted. The whole process of scanning is shown
in Fig. 6(b). Finally, the 1-D coefficient sequence is obtained.
Fig. 6(c) and (d) shows the 1-D coefficient sequence generated
by Morton scan and the proposed HAS method, respectively.
In Fig. 6, we can observe that, the proposed HAS method
can scan these weighted subbands adaptively, which can place
those important coefficients in the front of the 1-D sequence,
and preserve the texture information as much as possible.
This scanning way will help to improve the visual quality of
reconstructed images on the basis of visual weighting.

Fig. 6. Original image and its process of scanning. (a) Lunar (8 bit, 512 ×
512). (b) Process of HAS of the weighted transformed image of (a). (c) One-
dimensional coefficient sequence obtained by Morton scan. (d) One-
dimensional coefficient sequence obtained by the proposed HAS method.

TABLE I
ENERGY OF EACH SUBBAND OF THE TRANSFORMED IMAGE(×109)

D. Overhead of Bits

In Section II-A and B, it is worth noting that the importance
weighting masking is independent of the content of an image.
Thus, the mask is not needed to be transmitted to the receiver.
Only some side information, including the fovea point and the
width of the image, is needed to be sent for decoding correctly.
In this paper, four integers are used to record the position of
the fovea point (i.e., two integers for its horizontal ordinate
and the other two integers for its vertical ordinate), and two
integers are used to record the width of the image. Thus, the
side information of visual weighting mask is only six integers.

In addition, for the adaptive scanning method, the side infor-
mation, including the scanning orderamong the subbands and the
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scanning method of those diagonal subbands, is also needed to be
sent to the receiver. Supposing that the level of wavelet decom-
position is J , only 3J+1 integers are needed to represent the
scanning order among the subbands. In addition, J integers are
needed to represent the scanning methods of those diagonal sub-
bands. Therefore, the cost of side information of the adaptive
scanning method is (3J + 1) + J = 4J + 1. As a result, the
total side information at the encoder is 6 + (4J + 1) = 4J + 7.

Now, we take the image in Fig. 6(a) as an example. The size
of the “lunar” is 512 × 512, and the level of decomposition
J is 3. Supposing that the compression ratio is cr, then the
percentage of overhead bits is (4× 3 + 7)/(512× 512)/cr ≈
0.0000725 · cr. This means that the percentage of overhead
bits is proportional to the compression ratio and very small.
Moreover, if the size of the image is larger, then the proportion
of overhead bits would be smaller. Furthermore, if the entropy
coding is used to encode these overhead bits, the cost of over-
head would be reduced further. Based on the aforementioned
analysis, the overhead bits of the proposed HAS-based method
are extremely small and nearly can be negligible.

III. BINARY TREE CODING

Most of the embedded coding methods are based on quadtree
decomposition, such as EZW [3], SPIHT [4], and SPECK [5].
However, Shaffer et al. [40] pointed out that the coding method
based on binary tree decomposition is more efficient and sim-
pler than those based on quadtree decomposition. The state-of-
the-art compression approach based on binary tree is proposed
in [35], which developed a new method called BTCA. The
BTCA is extremely suitable for the compression of remote
sensing images because it can preserve more details. In this
paper, the BTCA is adopted as the embedded codec.

Function code = BTC(Γ, i, Tk)
Input: Γ represents a binary tree, and i is the index of a node of
the binary tree. Tk represents the threshold. T0 = 2�log2 Γ(1)�,
and Tk = T0/2

k.

• If Γ(i) has been coded with significant in larger thresh-
old, i.e., Γ(i) ≥ Tk−1, then

IfΓ(i) is not in the bottom level of the binary tree, code
the two children of Γ(i), else the sign of Γ(i) is coded.

• If Γ(i) has a significant parent, and the brother of Γ(i)
is insignificant, then

IfΓ(i) is not in the bottom level of the binary tree, code
the two children of Γ(i), else the sign of Γ(i) is coded.

• If Γ(i) ≥ Tk

If Γ(i) is not in the bottom level of the binary tree,
code the two children of Γ(i), and add a “1” before the
codestream. Else the sign of Γ(i) is coded, and add a “1”
before the codestream.

• Else
“0” is output.

Output: The codestream of the subtree whose root is the
node Γ(i).

Function code = BTCA(Tk)
Input: Tk is the threshold.
Initialization: d = D.
While (d > 1)
{

• For i =
∑d−1

j=0 2
j + 1 to

∑d
j=0 2

j

• Let ct = { }. If Γ(i) ≥ Tk−1

If Γ(i) is on the left of its brother, then ct = BTC(Γ,
i+ 1, Tk);
Else
ct = BTC(Γ, i− 1, Tk).

• code = {code, ct}.
• d = d− 1.

Output: The codestream of the bit plane for the given thresh-
old Tk.
}

The process of the binary tree coding (BTC) can be described
by the function BTC. Supposing that D represents the bottom
level of the tree, then the process of BTCA can be described by
the function BTCA.

IV. QUALITY EVALUATION INDEX

In Section I, we have pointed out that the purpose of the pro-
posed HAS-based compression method is to meet the growing
demand for browsing remote sensing images online. Therefore,
the proposed compression method should be evaluated by some
indexes related to human eye. In this paper, Foveation Wavelet
domain Quality Index (FWQI) [36], [45], visual signal-to-noise
ratio (VSNR) [41], [50], [51], and MultiScale Structural Simi-
larity Index Measure (MS-SSIM) [42], [52], [53] are chosen as
the evaluation indexes.

A. FWQI

In [43], Wang and Bovik proposed an image quality index
by modeling the image distortion as a combination of three
factors: loss of correlation, luminance distortion, and contrast
distortion. Then, they adapted the index into the DWT domain
and defined the FWQI [36] as

FWQI =

∑M
n=1 S(v,xn) · |c(xn)|Q(xn)∑M

n=1 S(v,xn) · |c(xn)|
. (14)

Here, M is the number of the wavelet coefficients. c(xn)
represents the wavelet coefficients at location xn. Q(xn) repre-
sents the quality value at location xn in the quality index map.
Since S(v,xn) varies with v, thus, the FWQI of a test image is
a function of v, instead of a single value.

B. VSNR

Chandler and Hemami [41] presented an efficient metric,
i.e., the VSNR metric, for quantifying the visual fidelity of an
image based on near-threshold and suprathreshold properties
of human vision. The VSNR is generally competitive with
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Fig. 7. Parts of the remote sensing images used in the experiment. (a) ocean_2kb1. (b) pavia1. (c) pavia2. (d) houston. (e) pleiades_portdebouc_pan1.
(f) pleiades_portdebouc_pan2.

other metrics of visual fidelity. The VSNR, in decibels, can be
calculated as follows:

VSNR = 20 log10

⎛
⎝ C (f)

αdpc + (1− α)
dgp√
2

⎞
⎠ (15)

where C(f) denotes the RMS contrast of the original image
f , dpc denotes the measure of the perceived contrast of the
distortions, and dgp presents the measure of the extent to which
global precedence has been disrupted. α is set to 0.04 for
providing a reasonable fit to subjective rating data.

C. MS-SSIM

The MS-SSIM is a multiscale structural similarity method,
which incorporates the variations of viewing conditions and is
more flexible than Structural Similarity Index Measure (SSIM).
Thus, we adopt the MS-SSIM as an evaluation index in this
paper. That is

SSIM(x, y) = [lM (x, y)]αM ·
M∏
j=1

[
cj(x, y)

βjsj(x, y)
γj
]
. (16)

Here, l(x, y), c(x, y), and s(x, y) represent the luminance,
contrast, and structure comparison, respectively.

V. EXPERIMENTS AND RESULTS

Here, some experiments are implemented to verify the per-
formance of the proposed HAS-based compression method for
remote sensing images. The results of the proposed method are

compared with that of other scan-based compression methods
at different bit rates.

A. Experimental Data Set

In order to prove the efficiency of the proposed HAS-based
compression method, several remote sensing images with dif-
ferent bit depths are chosen in the experiments. Most of them
are with high spatial resolution.

Some test images are from the CCSDS reference test image
set [44], including “lunar,” “coastal-b1,” “ocean-2kb1,” and
“pleiades_portdebouc_pan.” We crop the upper left of these
images with the size of 512 × 512, for comparison under
the same condition. Moreover, in order to fully verify the
effectiveness of the proposed method, two other remote sensing
images are chosen. The image “pavia” comes from the image
acquired by the QuickBird sensor over Pavia, Northern Italy,
whose resolution is 0.6 m, and “houston” comes from the image
acquired by the WorldView-2 sensor over Houston, TX, USA,
in 2013, whose resolution is 0.5 m. The sizes of test image
“pavia” and “houston” are all 512 × 512. In the test image set,
the bit depth of “lunar” and “coastal-b1” is 8 bits, the bit depth
of “ocean_2kb1” is 10 bits, the bit depth of “pavia” and “hous-
ton” is 11 bits, and the bit depth of “pleiades_portdebouc_pan”
is 12 bits. Parts of the test images are shown in Fig. 7.

B. Comparison of Visual Quality

In order to compare the visual quality of reconstructed im-
ages obtained by the proposed HAS-based compression method
and that obtained by other scan-based compression methods,
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Fig. 8. Comparison of visual quality of the proposed HAS-based compression
method and other scan-based compression methods with the “coastal-b1” im-
age. (a) Original image. (b) Fovea region of (a) when v = 5. (c) and (d) Recon-
stucted images obtained by SPIHT at 0.0313 and 0.0625 bpp, respectively.
(e) and (f) Reconstucted images obtained by JPEG2000 at 0.0313 and 0.0625 bpp,
respectively. (g) and (h) Reconstucted images obtained by BTCA at 0.0313
and 0.0625 bpp, respectively. (i) and (j) Reconstucted images obtained by the
proposed method at 0.0313 and 0.0625 bpp, respectively.

Fig. 9. Result of some quality evaluation indexes at different bit rates.
(a) Result of the FWQI. (b) Result of the VSNR. (c) Result of the MS-SSIM.

we choose the “coastal-b1” as test image. Supposing that the
fovea point is the center of an image and the viewing distance
v is 5, the level of wavelet decomposition is 5. The image is
compressed by SPIHT, JPEG2000, BTCA, and the proposed
HAS-based compression method, respectively. The comparison
results of the visual quality of reconstructed images at different
bit rates are shown in Fig. 8.

In Fig. 8, we can observe that the visual quality of recon-
structed images obtained by SPIHT is the worst. For JPEG2000,
some sophisticated components, such as context modeling and
rate–distortion optimization, particularly the HVS-based CSF
model, all can help it to obtain a good coding performance.
Therefore, the visual quality of reconstructed images obtained
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TABLE II
FWQI FOR THE PROPOSED COMPRESSION METHOD AND OTHER SCAN-BASED COMPRESSION METHODS

TABLE III
FWQI FOR THE PROPOSED COMPRESSION METHOD AND OTHER SCAN-BASED COMPRESSION METHODS

by JPEG2000 is better than that of SPIHT. However, as men-
tioned in Section I, The existing Part 1 JPEG2000-compliant
visual progressive weighting scheme only uses a single weight
for an entire coding block, whose size is 64 × 64 or 32 × 32.
For each code block, it corresponds to a large portion of the
relevant image. Theoretically, the visual sensitivities of these
coefficients in this portion are different; each coefficient should
be weighted by a weight that related to its visual sensitivity.
Therefore, a main limitation of the JPEG2000 visual weighting
mask is that the weight is not very fine enough. It will affect the
visual quality of reconstructed images. For BTCA, the binary
tree coding is more efficient, which traverses the binary tree
level by level from the bottom to the top, and also can provide
a good visual effect. The visual quality of reconstructed images
obtained by the proposed HAS-based compression method is
the best. The reason is that the proposed method adopts the
retina-based visual sensitivity model, which provides a weight
for each coefficient of the image based on the HVS. It helps
to guarantee that the bits with greater contribution to human
vision are encoded and transmitted in priority, particularly those
bits in the fovea region. In addition, both the adaptive scanning
and encoding processes of the proposed compression method
can help to preserve more texture information. As a result, the
visual quality of reconstructed images must be improved. It
can be observed that, in Fig. 8(i) and (j), for a given bit rate,
as compared with other methods, the details in the rectangle
boxes that belong to the fovea region and its surrounding area
of the reconstructed image obtained by the proposed method
are more abundant and clearer. This proves that the proposed
compression method is more consistent with the characteristics
of human vision.

In order to verify the effectiveness of the proposed method
further, for the image in Fig. 8(a), under the same condition,

more experiments are performed. The result of FWQI, VSNR,
and MS-SSIM of all these methods at bit rates from 0.0313
to 1 bpp are shown in Fig. 9(a)–(c), respectively. It has been
demonstrated that, from the perspective of objective evaluation,
the visual quality of reconstructed images obtained by the
proposed HAS-based compression method is still superior to
that obtained by other scan-based compression methods at all
bit rates.

C. Performance Comparison of the Proposed HAS-Based
Compression Method With Other Scan-Based Methods

Here, more experiments are conducted to verify the proposed
method. In these experiments, all test images mentioned in
Section V-A are used. They are decomposed by five-level
9/7-tap biorthogonal wavelet filters. In Fig. 3, we can observe
that the maximum possible viewing distance v is 3. Therefore,
for these experiments, v is set to 3. The result of FWQI, VSNR,
and MS-SSIM of all compression methods at different bit rates
are tabulated in Tables II–VII, respectively.

FWQI is a quality index relevant to the fovea point, and it
is a function of viewing distance. It can evaluate the proposed
compression method effectively. In Tables II and III, we can
observe that, when the bit rate is less than 0.5 bpp, for all
the test images, the FWQIs of reconstructed images obtained
by the proposed HAS-based compression method are better
than that of all other compression methods. The reason is that,
for the proposed method, the retina-based visual weighting
masking is adopted, and the adaptive scanning strategy takes
the content of image and the characteristics of subband into
account, simultaneously. As a result, comparing with other
compression methods, more visual important information can
be preserved, which is beneficial to improve the visual effect of
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TABLE IV
VSNR (dB) FOR THE PROPOSED COMPRESSION METHOD AND OTHER SCAN-BASED COMPRESSION METHODS

TABLE V
VSNR (dB) FOR THE PROPOSED COMPRESSION METHOD AND OTHER SCAN-BASED COMPRESSION METHODS

TABLE VI
MS-SSIM FOR THE PROPOSED COMPRESSION METHOD AND OTHER SCAN-BASED COMPRESSION METHODS

TABLE VII
MS-SSIM FOR THE PROPOSED COMPRESSION METHOD AND OTHER SCAN-BASED COMPRESSION METHODS

reconstructed images. On the other hand, with the increasing
bit rate, some sophisticated algorithms, such as JPEG2000,
sometimes provide a better result. For example, Table III shows
that, for the test image “houston,” when the bit rate is 0.5 bpp,
the FWQI of the proposed method is 0.646, and that of the
JPEG2000 is 0.650. The reason is that, when the bit rate is high,
some sophisticated components of JPEG2000, such as context
modeling and rate–distortion optimization, all can help it to

obtain a better performance. However, the slight performance
improvement is at the cost of high complexity. Nevertheless, for
most of the test images, the proposed HAS-based method is still
the best compression method at high bit rates. Typically, differ-
ent images are of different contents, including the complexity
and texture. From the perspective of evaluating an algorithm,
instead of evaluating it by one image, a better way is to use
many test images and evaluate the average result. According
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to Tables II and III, for all given bit rates, the average FWQIs
of the proposed method are the highest. This means that the
proposed HAS-based compression method is more effective
compared with other compression methods.

Tables IV and V list the VSNR results of the proposed method
and the other three methods. Based on the aforementioned
analysis, the proposed compression method is still superior
to other methods. As an error summation method, MS-SSIM
can provide a whole approximation to the perceived image
quality from the perspective of structural similarity. According
to Tables VI and VII, we can observe that the MS-SSIM results
of the proposed HAS-based compression method are still better
than those of other scan-based methods.

According to the results listed in Tables II–VII, we can
observe that, for all given bit rates, the average results of FWQI,
VSNR, and MS-SSIM obtained by the proposed compression
method are all the best. This illustrates that, as compared with
other scan-based compression methods, the proposed HAS-
based compression method can provide better visual quality of
reconstructed images.

VI. CONCLUSION AND DISCUSSION

In this paper, we have presented a HAS scheme for the
compression of remote sensing images. Different scanning
orders among subbands and within a subband are designed,
respectively. The human visual sensitivity, the content of image,
and the characteristics of remote sensing images are considered
in the proposed compression algorithm, simultaneously. The
overhead bits of the proposed HAS-based compression method
are extremely small and almost can be negligible. The pro-
posed compression method can achieve the progressive image
transmission because of its binary tree strategy. Experimental
results show that, as compared with other scan-based methods,
the proposed compression method can provide better visual
quality of reconstructed images in each phase. In addition, the
proposed method does not adopt any sophisticated components
such as context modeling or rate–distortion optimization, even
entropy coding. Therefore, it is of low complexity, which means
that it can be implemented in hardware or software easily. The
proposed HAS-based compression method is very suitable for
the vision-related applications for remote sensing images, such
as the remote sensing map online browsing, and has a very
broad application prospect.

The determination of fovea point is a problem worth study-
ing. In this paper, the fovea point is assumed to be the center
of an image, which is under the premise that the user is not
particularly interested in a certain area. In practical applica-
tions, the fovea point may be not always the center of an image.
Theoretically, there are two ways to determine the fovea region.
One is the completely automatic method, which can locate the
region of interest automatically. However, it is very difficult to
implement. The reason is that, for remote sensing images, it
usually contains the information of terrain or landform; unlike
some common applications such as face recognition, the target
of remote sensing images is hard to determine. Another more
feasible approach is to ask users to indicate the point or region
of interest and then feedback the information to the encoder.

However, this requires that the compression system is a real-
time system. How to provide a good visual quality, while
speeding up the process of real-time compression, is an issue
worthy studying. We will do some research on it in the future.

REFERENCES

[1] J. M. Bioucas-Dias et al., “Hyperspectral remote sensing data analysis
and future challenges,” IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2,
pp. 6–36, Jun. 2013.

[2] Y. H. Liu et al., “Applying GPU and POSIX thread technologies in mas-
sive remote sensing image data processing,” in Proc. Geoinformat. Conf.,
Beijing, China, 2011, pp. 1–6.

[3] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet co-
efficients,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3445–3462,
Dec. 1993.

[4] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based
on set partitioning in hierarchical trees,” IEEE Trans. Circuits Syst. Video
Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.

[5] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient low
complexity image coding with a set-partitioning embedded block coder,”
IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 11, pp. 1219–1235,
Nov. 2004.

[6] JPEG2000 Image Coding System, ISO/IEC Std. 15 444-1, 2000.
[7] S. Patel and S. Srinivasan, “Modified embedded zerotree wavelet algo-

rithm for fast implementation of wavelet image codec,” Electron. Lett.,
vol. 36, no. 20, pp. 1713–1714, Sep. 2000.

[8] V. N. Ramaswamy, K. R. Namuduri, and N. Ranganathan, “Context-based
lossless image coding using EZW framework,” IEEE Trans. Circuits Syst.
Video Technol., vol. 11, no. 4, pp. 554–559, Apr. 2001.

[9] S. R. Chang and L. Carin, “A modified SPIHT algorithm for image coding
with a joint MSE and classification distortion measure,” IEEE Trans.
Image Process., vol. 15, no. 3, pp. 713–725, Mar. 2006.

[10] Z. J. Fang, N. X. Xiong, L. T. Yang, X. M. Sun, and Y. Yang,
“Interpolation-based direction-adaptive lifting DWT and modified SPIHT
for image compression in multimedia communications,” IEEE Syst. J.,
vol. 5, no. 4, pp. 584–593, Dec. 2011.

[11] Y. Jin and H. J. Lee, “A block-based pass-parallel SPIHT algorithm,”
IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 7, pp. 1064–1075,
Jul. 2012

[12] Z. Y. Wu, A. Bilgin, and M. W. Marcellin, “Joint source/channel coding
for image transmission with JPEG2000 over memoryless channels,” IEEE
Trans. Image Process., vol. 14, no. 8, pp. 1020–1032, Aug. 2005.

[13] J. Y. Yang, Y. Wang, W. L. Xu, and Q. H. Dai, “Image coding using dual-
tree discrete wavelet transform,” IEEE Trans. Image Process., vol. 17,
no. 9, pp. 1555–1569, Sep. 2008.

[14] L. Z. Wang, Y. Ma, A. Y. Zomaya, R. Ranjan, and D. Chen, “A parallel
file system with application-aware data layout policies for massive remote
sensing image processing in digital earth,” IEEE Trans. Parallel Distrib.
Syst., vol. 26, no. 6, pp. 1497–1508, Jun. 2015.

[15] A. Beghdadi, M. C. Larabi, A. Bouzerdoum, and K. M. Lftekharuddin, “A
survey of perceptual image processing methods,” Signal Process., Image
Commun., vol. 28, no. 8, pp. 811–831, Sep. 2013.

[16] B. Macq and H. Q. Shi, “Perceptually weighted vector quantization
in the DCT domain,” Electron. Lett., vol. 29, no. 15, pp. 1382–1384,
Jul. 1993.

[17] I. Hontsch and L. J. Karam, “Locally adaptive perceptual image coding,”
IEEE Trans. Image Process., vol. 9, no. 9, pp. 1472–1483, Sep. 2000.

[18] I. Hontsch and L. J. Karam, “Adaptive image coding with perceptual dis-
tortion control,” IEEE Trans. Image Process., vol. 11, no. 9, pp. 213–222,
Mar. 2002.

[19] M. G. Albanesi and F. Guerrini, “An HVS-based adaptive coder for
perceptually lossy image compression,” Pattern Recog., vol. 36, no. 4,
pp. 997–1007, Apr. 2003.

[20] M. J. Nadenau, J. Reichel, and M. Kunt, “Wavelet-based color image
compression: Exploring the contrast sensitivity function,” IEEE Trans.
Image Process., vol. 12, no. 1, pp. 58–70, Jan. 2003.

[21] Z. Liu, L. J. Karam, and A. B. Watson, “JPEG2000 encoding with per-
ceptual distortion control,” IEEE Trans. Image Process., vol. 15, no. 7,
pp. 1763–1778, Jul. 2006.

[22] G. Sreelekha and P. S. Sathidevi, “An HVS based adaptive quantization
scheme for the compression of color images,” Digital Signal Process.,
vol. 20. no. 4. pp. 1129–1149, Jul. 2010.

[23] D. Wu et al., “Perceptually lossless medical image coding,” IEEE Trans.
Medical Image, vol. 25, no. 3, pp. 335–344, Mar. 2006.



1348 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 3, MARCH 2016

[24] X. H. Zhang, W. S. Lin, and P. Xue, “Just-noticeable difference estimation
with pixels in images,” J. Vis. Commun. Image R, vol. 19, no. 1, pp. 30–41,
Jan. 2008.

[25] D. M. Tan, C. S. Tan, and H. R. Wu, “Perceptual color image coding with
JPEG2000,” IEEE Trans. Image Process., vol. 19, no. 2, pp. 374–383,
Feb. 2010.

[26] H. Oh, A. Bilgin, and M. W. Marcellin, “Visually lossless encoding for
JPEG2000,” IEEE Trans. Image Process., vol. 22, no. 1, pp. 189–201,
Jan. 2013.

[27] Y. Niu, X. L. Wu, G. M. Shi, and X. T. Wang, “Edge-based perceptual im-
age coding,” IEEE Trans. Image Process., vol. 21, no. 4, pp. 1899–1910,
Apr. 2012.

[28] A. L. N, T. D. Costa, and M. N. Do, “A retina-based perceptually lossless
limit and a Gaussian foveation scheme with loss control,” IEEE J. Sel.
Topics. Signal Process, vol. 8, no. 3, pp. 438–453, Jun. 2014.

[29] B. Li, R. Yang, and H. X. Jiang. “Remote-sensing image compression
using two-dimensional oriented wavelet transform,” IEEE Trans. Geosci.
Remote Sens., vol. 49, no. 1, pp. 236–250, Jan. 2011.

[30] A. Karami, M. Yazdi, and G. Mercier. “Compression of hyperspectral im-
ages using discrete wavelet transform and Tucker decomposition,” IEEE
J. Sel. Topics Appl. Earth Observ., vol. 5, no. 2, pp. 444–450, Apr. 2012.

[31] X. Zhan, R. Zhang, D. Yin, and A. Z. Hu. “Remote sensing image
compression based on double-sparsity dictionary learning and universal
trellis coded quantization,” in Proc. IEEE Int. Conf. Image Process., 2013,
pp. 1665–1669.

[32] C. Jiang, H. Y. Zhang, H. F. Shen, and L. P. Zhang. “Two-step sparse
coding for the pan-sharpening of remote sensing images,” IEEE J. Sel.
Topics Appl. Earth Observ., vol. 7, no. 5, pp. 1792–1805, May 2014.

[33] P. Kulkarni, A. Bilgin, M. W. Marcellin, and J. C. Dagher, “Compres-
sion of earth science data with JPEG2000,” in Proc. Hyperspectral Data
Compression, 2006, pp. 347–378.

[34] F. García-Vílchez and J. Serra-Sagristà, “Extending the CCSDS recom-
mendation for image data compression for remote sensing scenarios,”
IEEE Trans. Geosci. Remote Sens., vol. 47, no. 10, pp. 3431–3445,
Oct. 2009.

[35] K. K. Huang and D. Q. Dai, “A new on-board image codec based on
binary tree with adaptive scanning order in scan-based mode,” IEEE
Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3737–3750, Oct. 2012.

[36] Z. Wang and A. C. Bovik, “Embedded foveation image coding,” IEEE
Trans. Image Process., vol. 10, no. 10, pp. 1397–1410, Oct. 2001.

[37] W. S. Geisler and J. S. Perry, “A real-time foveated multiresolution sys-
tem for low-bandwidth video communication,” Proc. SPIE, vol. 3299,
pp. 1–13, 1998.

[38] A. B. Watson, G. Y. Yang, J. A. Solomon, and J. Villasenor. “Visibility
of wavelet quantization noise,” IEEE Trans. Image Process., vol. 6, no. 8,
pp. 1164–1175, Aug. 1997.

[39] N. Memon, D. L. Neuhoff, and S. Shende, “An analysis of some com-
mon scanning techniques for lossless image coding,” IEEE Trans. Image
Process., vol. 9, no. 11, pp. 1837–1848, Nov. 2000.

[40] C. A. Shaffer, R. Juvvadi, and L. S. Health, “Generalized comparison of
quadtree and bintree storage requirements,” Image Vis. Comput., vol. 11,
no. 7, pp. 402–412, 1993.

[41] D. M. Chandler and S. S. Hemami. “VSNR: A wavelet-based visual
signal-to-noise ratio for natural images,” IEEE Trans. Image Process.,
vol. 16, no. 9, pp. 2284–2298, Sep. 2007.

[42] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similar-
ity for image quality assessment,” in Proc. IEEE Asilomar Conf. Signals,
Syst., Comput., Pacific Grove, CA, USA, Nov. 2003, pp. 1398–1402.

[43] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal
Process. Lett., vol. 9, no. 3, pp. 81–84, Mar. 2002.

[44] CCSDS reference test image set, Apr. 2007. [Online]. Available: http://
cwe.ccsds.org/sls/docs/sls-dc/

[45] H. Lee and S. Lee, “Visual entropy gain for wavelet image coding,” IEEE
Signal Process. Lett., vol. 13, no. 9, pp. 553–556, Sep. 2006.

[46] W. J. Zeng, S. Daly, and S. Lei, “An overview of the visual optimization
tools in JPEG 2000,” Signal Process.: Image Commun., vol. 17, no. 1,
pp. 85–104, Jan. 2002.

[47] X. Huang, X. B. Liu, and L. P. Zhang, “A multichannel gray level co-
occurrence matrix for multi/hyperspectral image texture representation,”
Remote Sens., vol. 6, no. 9, pp. 8424–8445, 2014.

[48] S. Saha, “Image compression—From DCT to wavelets: A review,”
Crossroads, vol. 6, no. 3, pp. 12–21, 2000.

[49] A. S. Lewis and G. Knowles, “Image compression using the 2-D wavelet
transform,” IEEE Trans. Image Process., vol. 1, no. 2, pp. 244–250,
Apr. 1992.

[50] V. Bruni and D. Vitulano, “An improvement of kernel-based object track-
ing based on human perception,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 44, no. 11, pp. 1474–1485, Nov. 2014.

[51] X. Long, S. N. Li, K. N. Ngan, and L. Ma, “Consistent visual quality con-
trol in video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 23,
no. 6, pp. 975–989, Jun. 2013.

[52] J. J. Wu, W. S. Lin, G. M. Shi, and A. M. Liu, “Perceptual quality
metric with internal generative mechanism,” IEEE Trans. Image Process.,
vol. 22, no. 1, pp. 43–54, Jan. 2013.

[53] K. F. Zhu, C. Q. Li, V. Asari, and D. Saupe, “No-reference video qual-
ity assessment based on artifact measurement and statistical analysis,”
IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 4, pp. 533–546,
Apr. 2015.

Cuiping Shi (S’13) received the B.S. degree from
the Daqing Petroleum Institute, Daqing, China, in
2004 and the M.S. degree from the Yangzhou Uni-
versity, Yangzhou, China, in 2007. She is currently
working toward the Ph.D. degree in signal and infor-
mation processing with Harbin Institute of Technol-
ogy, Harbin, China.

Her research interests include remote sensing data
processing and hyperspectral image processing.

Junping Zhang (M’05) received the B.S. degree
in biomedical engineering and instrument from the
Harbin Engineering University and Harbin Medical
University, Harbin, China, in 1993 and the M.S. and
Ph.D. degrees in signal and information processing
from Harbin Institute of Technology (HIT), Harbin,
in 1998 and 2002, respectively.

She is currently a Professor with the Department
of Information Engineering, School of Electronics
and Information Engineering, HIT. Her research in-
terests include hyperspectral data analysis and im-

age processing, multisource information fusion, and pattern recognition and
classification.

Ye Zhang (M’10) received the B.S., M.S., and Ph.D.
degrees from the Harbin Institute of Technology,
Harbin, China, in 1982, 1985, and 1996, respectively.

From September 1998 to September 1999, he was
a Visiting Scholar at the University of Texas at San
Antonio, San Antonio, TX, USA. Since 1985, he has
been with the Department of Electrical and Com-
munication Engineering, Harbin Institute of Tech-
nology, where he is currently a Professor with the
Department of Information Engineering, School of
Electronics and Information Engineering. His main

research interests include hyperspectral image analysis and processing, image
and video compression and transmission, and multisensor-based remote sensing
image coprocessing and applications.



https://digital-camscanner.onelink.me/P3GL/w1r4frhy


https://digital-camscanner.onelink.me/P3GL/w1r4frhy

